Borel summability for a formal solution of ∂/∂t u(t,x) = (∂/∂x)² u(t,x) + t(t∂/∂t)³ u(t,x)
Hiroshi Yamazawa
Banach Center Publications, Tome 97 (2012), p. 161-168 / Harvested from The Polish Digital Mathematics Library

In this paper we study the Borel summability of a certain divergent formal power series solution for an initial value problem. We show the Borel summability under the condition that an initial value function ϕ(x) is an entire function of exponential order at most 2.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:281767
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc97-0-12,
     author = {Hiroshi Yamazawa},
     title = {Borel summability for a formal solution of $\partial$/$\partial$t u(t,x) = ($\partial$/$\partial$x)$^2$ u(t,x) + t(t$\partial$/$\partial$t)$^3$ u(t,x)},
     journal = {Banach Center Publications},
     volume = {97},
     year = {2012},
     pages = {161-168},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc97-0-12}
}
Hiroshi Yamazawa. Borel summability for a formal solution of ∂/∂t u(t,x) = (∂/∂x)² u(t,x) + t(t∂/∂t)³ u(t,x). Banach Center Publications, Tome 97 (2012) pp. 161-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc97-0-12/