We study relations between the Boolean convolution and the symmetrization and the pushforward of order 2. In particular we prove that if μ₁,μ₂ are probability measures on [0,∞) then and if ν₁,ν₂ are symmetric then . Finally we investigate necessary and sufficient conditions under which the latter equality holds.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc96-0-18, author = {Wojciech M\l otkowski and Noriyoshi Sakuma}, title = {Symmetrization of probability measures, pushforward of order 2 and the Boolean convolution}, journal = {Banach Center Publications}, volume = {95}, year = {2011}, pages = {271-276}, zbl = {1259.46056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc96-0-18} }
Wojciech Młotkowski; Noriyoshi Sakuma. Symmetrization of probability measures, pushforward of order 2 and the Boolean convolution. Banach Center Publications, Tome 95 (2011) pp. 271-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc96-0-18/