In this paper we prove that a Gaussian white noise on the d-dimensional torus has paths in the Besov spaces with p ∈ [1,∞). This result is shown to be optimal in several ways. We also show that Gaussian white noise on the d-dimensional torus has paths in the Fourier-Besov space . This is shown to be optimal as well.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-24, author = {Mark C. Veraar}, title = {Regularity of Gaussian white noise on the d-dimensional torus}, journal = {Banach Center Publications}, volume = {95}, year = {2011}, pages = {385-398}, zbl = {1252.60035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-24} }
Mark C. Veraar. Regularity of Gaussian white noise on the d-dimensional torus. Banach Center Publications, Tome 95 (2011) pp. 385-398. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-24/