In this paper we prove that a Gaussian white noise on the d-dimensional torus has paths in the Besov spaces with p ∈ [1,∞). This result is shown to be optimal in several ways. We also show that Gaussian white noise on the d-dimensional torus has paths in the Fourier-Besov space . This is shown to be optimal as well.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-24,
author = {Mark C. Veraar},
title = {Regularity of Gaussian white noise on the d-dimensional torus},
journal = {Banach Center Publications},
volume = {95},
year = {2011},
pages = {385-398},
zbl = {1252.60035},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-24}
}
Mark C. Veraar. Regularity of Gaussian white noise on the d-dimensional torus. Banach Center Publications, Tome 95 (2011) pp. 385-398. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-24/