Let (Ω,Σ,μ) be a finite measure space and let X be a real Banach space. Let be the Orlicz-Bochner space defined by a Young function Φ. We study the relationships between Dunford-Pettis operators T from L¹(X) to a Banach space Y and the compactness properties of the operators T restricted to . In particular, it is shown that if X is a reflexive Banach space, then a bounded linear operator T:L¹(X) → Y is Dunford-Pettis if and only if T restricted to is -compact.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-21, author = {Marian Nowak}, title = {Dunford-Pettis operators on the space of Bochner integrable functions}, journal = {Banach Center Publications}, volume = {95}, year = {2011}, pages = {353-358}, zbl = {1234.47025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-21} }
Marian Nowak. Dunford-Pettis operators on the space of Bochner integrable functions. Banach Center Publications, Tome 95 (2011) pp. 353-358. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-21/