The main aim of this paper is to prove that there exists a martingale such that the Fejér means of the two-dimensional Walsh-Fourier series of f is not uniformly bounded in the space weak-.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-18,
author = {Ushangi Goginava},
title = {Norm convergence of Fej\'er means of two-dimensional Walsh-Fourier series},
journal = {Banach Center Publications},
volume = {95},
year = {2011},
pages = {317-324},
zbl = {1246.42023},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-18}
}
Ushangi Goginava. Norm convergence of Fejér means of two-dimensional Walsh-Fourier series. Banach Center Publications, Tome 95 (2011) pp. 317-324. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-18/