The aim of this paper is to show that every Hausdorff continuous interval-valued function on a completely regular topological space X corresponds to a Dedekind cut in C(X) and conversely.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-16,
author = {Nicolae D\u ane\c t},
title = {Dedekind cuts in C(X)},
journal = {Banach Center Publications},
volume = {95},
year = {2011},
pages = {287-297},
zbl = {1244.54042},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-16}
}
Nicolae Dăneţ. Dedekind cuts in C(X). Banach Center Publications, Tome 95 (2011) pp. 287-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc95-0-16/