Quasialgebraic functions
G. Binyamini ; D. Novikov ; S. Yakovenko
Banach Center Publications, Tome 95 (2011), p. 61-81 / Harvested from The Polish Digital Mathematics Library

We introduce and discuss a new class of (multivalued analytic) transcendental functions which still share with algebraic functions the property that the number of their isolated zeros can be explicitly counted. On the other hand, this class is sufficiently rich to include all periods (integral of rational forms over algebraic cycles).

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:282472
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc94-0-3,
     author = {G. Binyamini and D. Novikov and S. Yakovenko},
     title = {Quasialgebraic functions},
     journal = {Banach Center Publications},
     volume = {95},
     year = {2011},
     pages = {61-81},
     zbl = {1241.34036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc94-0-3}
}
G. Binyamini; D. Novikov; S. Yakovenko. Quasialgebraic functions. Banach Center Publications, Tome 95 (2011) pp. 61-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc94-0-3/