On the envelope of a vector field
Bernard Malgrange
Banach Center Publications, Tome 95 (2011), p. 239-246 / Harvested from The Polish Digital Mathematics Library

Given a vector field X on an algebraic variety V over ℂ, I compare the following two objects: (i) the envelope of X, the smallest algebraic pseudogroup over V whose Lie algebra contains X, and (ii) the Galois pseudogroup of the foliation defined by the vector field X + d/dt (restricted to one fibre t = constant). I show that either they are equal, or the second has codimension one in the first.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:282371
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc94-0-17,
     author = {Bernard Malgrange},
     title = {On the envelope of a vector field},
     journal = {Banach Center Publications},
     volume = {95},
     year = {2011},
     pages = {239-246},
     zbl = {1246.37038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc94-0-17}
}
Bernard Malgrange. On the envelope of a vector field. Banach Center Publications, Tome 95 (2011) pp. 239-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc94-0-17/