Jacobi operators of quantum counterparts of three-dimensional real Lie algebras over the harmonic oscillator
Eugen Paal ; Jüri Virkepu
Banach Center Publications, Tome 95 (2011), p. 199-209 / Harvested from The Polish Digital Mathematics Library

Operadic Lax representations for the harmonic oscillator are used to construct the quantum counterparts of three-dimensional real Lie algebras. The Jacobi operators of these quantum algebras are explicitly calculated.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:281854
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc93-0-16,
     author = {Eugen Paal and J\"uri Virkepu},
     title = {Jacobi operators of quantum counterparts of three-dimensional real Lie algebras over the harmonic oscillator},
     journal = {Banach Center Publications},
     volume = {95},
     year = {2011},
     pages = {199-209},
     zbl = {1248.81042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc93-0-16}
}
Eugen Paal; Jüri Virkepu. Jacobi operators of quantum counterparts of three-dimensional real Lie algebras over the harmonic oscillator. Banach Center Publications, Tome 95 (2011) pp. 199-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc93-0-16/