Smoothness of Green's functions and Markov-type inequalities
Leokadia Białas-Cież
Banach Center Publications, Tome 95 (2011), p. 27-36 / Harvested from The Polish Digital Mathematics Library

Let E be a compact set in the complex plane, gE be the Green function of the unbounded component of E with pole at infinity and M(E)=sup(||P'||E)/(||P||E) where the supremum is taken over all polynomials P|E0 of degree at most n, and ||f||E=sup|f(z)|:zE. The paper deals with recent results concerning a connection between the smoothness of gE (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence M(E)n=1,2,.... Some additional conditions are given for special classes of sets.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:281729
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc92-0-2,
     author = {Leokadia Bia\l as-Cie\.z},
     title = {Smoothness of Green's functions and Markov-type inequalities},
     journal = {Banach Center Publications},
     volume = {95},
     year = {2011},
     pages = {27-36},
     zbl = {1229.31001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc92-0-2}
}
Leokadia Białas-Cież. Smoothness of Green's functions and Markov-type inequalities. Banach Center Publications, Tome 95 (2011) pp. 27-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc92-0-2/