The theory of quasimultipliers in Banach algebras is developed in order to provide a mechanism for defining the boundary values of analytic semigroups on a sector in the complex plane. Then, some methods are presented for deriving lower estimates for operators defined in terms of quasinilpotent semigroups using techniques from the theory of complex analysis.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc91-0-5, author = {Isabelle Chalendar and Jean Esterle and Jonathan R. Partington}, title = {Boundary values of analytic semigroups and associated norm estimates}, journal = {Banach Center Publications}, volume = {89}, year = {2010}, pages = {87-103}, zbl = {1226.47040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc91-0-5} }
Isabelle Chalendar; Jean Esterle; Jonathan R. Partington. Boundary values of analytic semigroups and associated norm estimates. Banach Center Publications, Tome 89 (2010) pp. 87-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc91-0-5/