Let X,X₁,...,Xₙ be independent identically distributed random variables taking values in a measurable space (Θ,ℜ ). Let h(x,y) and g(x) be real valued measurable functions of the arguments x,y ∈ Θ and let h(x,y) be symmetric. We consider U-statistics of the type Δn = ρ(T(X₁,...,Xₙ),T(G₁,..., Gₙ)) ≤ (cβ’1/6)/(√(|q₁|) n1/12)where , 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform) distance and .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc90-0-17, author = {Olga Yanushkevichiene}, title = {Asymptotic rate of convergence in the degenerate U-statistics of second order}, journal = {Banach Center Publications}, volume = {89}, year = {2010}, pages = {275-284}, zbl = {1229.62056}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc90-0-17} }
Olga Yanushkevichiene. Asymptotic rate of convergence in the degenerate U-statistics of second order. Banach Center Publications, Tome 89 (2010) pp. 275-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc90-0-17/