We prove that Brownian motion on an abstract Wiener space B generates a locally equicontinuous semigroup on equipped with the -topology introduced by L. Le Cam. Hence we obtain a “Laplace operator” as its infinitesimal generator. Using this Laplacian, we discuss Poisson’s equation and heat equation, and study its properties, especially the difference from the Gross Laplacian.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-8,
author = {Kei Harada},
title = {Generators of Brownian motions on abstract Wiener spaces},
journal = {Banach Center Publications},
volume = {89},
year = {2010},
pages = {135-142},
zbl = {1225.47041},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-8}
}
Kei Harada. Generators of Brownian motions on abstract Wiener spaces. Banach Center Publications, Tome 89 (2010) pp. 135-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-8/