We prove that Brownian motion on an abstract Wiener space B generates a locally equicontinuous semigroup on equipped with the -topology introduced by L. Le Cam. Hence we obtain a “Laplace operator” as its infinitesimal generator. Using this Laplacian, we discuss Poisson’s equation and heat equation, and study its properties, especially the difference from the Gross Laplacian.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-8, author = {Kei Harada}, title = {Generators of Brownian motions on abstract Wiener spaces}, journal = {Banach Center Publications}, volume = {89}, year = {2010}, pages = {135-142}, zbl = {1225.47041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-8} }
Kei Harada. Generators of Brownian motions on abstract Wiener spaces. Banach Center Publications, Tome 89 (2010) pp. 135-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-8/