We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators on with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra associated with the quantum group . The purpose of this note is to present the construction.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-22,
author = {Janusz Wysocza\'nski},
title = {On a cubic Hecke algebra associated with the quantum group $U\_q(2)$
},
journal = {Banach Center Publications},
volume = {89},
year = {2010},
pages = {323-327},
zbl = {1261.17016},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-22}
}
Janusz Wysoczański. On a cubic Hecke algebra associated with the quantum group $U_q(2)$
. Banach Center Publications, Tome 89 (2010) pp. 323-327. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-22/