We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators on with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra associated with the quantum group . The purpose of this note is to present the construction.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-22, author = {Janusz Wysocza\'nski}, title = {On a cubic Hecke algebra associated with the quantum group $U\_q(2)$ }, journal = {Banach Center Publications}, volume = {89}, year = {2010}, pages = {323-327}, zbl = {1261.17016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-22} }
Janusz Wysoczański. On a cubic Hecke algebra associated with the quantum group $U_q(2)$ . Banach Center Publications, Tome 89 (2010) pp. 323-327. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-22/