Characterization of surjective convolution operators on Sato's hyperfunctions
Michael Langenbruch
Banach Center Publications, Tome 89 (2010), p. 185-193 / Harvested from The Polish Digital Mathematics Library

Let μ(d)' be an analytic functional and let Tμ be the corresponding convolution operator on Sato’s space (d) of hyperfunctions. We show that Tμ is surjective iff Tμ admits an elementary solution in (d) iff the Fourier transform μ̂ satisfies Kawai’s slowly decreasing condition (S). We also show that there are 0μ(d)' such that Tμ is not surjective on (d).

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:281860
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc88-0-15,
     author = {Michael Langenbruch},
     title = {Characterization of surjective convolution operators on Sato's hyperfunctions},
     journal = {Banach Center Publications},
     volume = {89},
     year = {2010},
     pages = {185-193},
     zbl = {1213.46035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc88-0-15}
}
Michael Langenbruch. Characterization of surjective convolution operators on Sato's hyperfunctions. Banach Center Publications, Tome 89 (2010) pp. 185-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc88-0-15/