We discuss continuity properties of the Weyl product when acting on classical modulation spaces. In particular, we prove that is an algebra under the Weyl product when p ∈ [1,∞] and 1 ≤ q ≤ min(p,p’).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc88-0-12, author = {Anders Holst and Joachim Toft and Patrik Wahlberg}, title = {Weyl product algebras and classical modulation spaces}, journal = {Banach Center Publications}, volume = {89}, year = {2010}, pages = {153-158}, zbl = {1198.42018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc88-0-12} }
Anders Holst; Joachim Toft; Patrik Wahlberg. Weyl product algebras and classical modulation spaces. Banach Center Publications, Tome 89 (2010) pp. 153-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc88-0-12/