We investigate a system describing electrically charged particles in the whole space ℝ². Our main goal is to describe large time behavior of solutions which start their evolution from initial data of small size. This is achieved using radially symmetric self-similar solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8,
author = {Agnieszka Herczak and Micha\l\ Olech},
title = {Existence and asymptotics of solutions of the Debye-Nernst-Planck system in $\mathbb{R}$$^2$},
journal = {Banach Center Publications},
volume = {86},
year = {2009},
pages = {129-148},
zbl = {1172.35329},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8}
}
Agnieszka Herczak; Michał Olech. Existence and asymptotics of solutions of the Debye-Nernst-Planck system in ℝ². Banach Center Publications, Tome 86 (2009) pp. 129-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8/