Existence and asymptotics of solutions of the Debye-Nernst-Planck system in ℝ²
Agnieszka Herczak ; Michał Olech
Banach Center Publications, Tome 86 (2009), p. 129-148 / Harvested from The Polish Digital Mathematics Library

We investigate a system describing electrically charged particles in the whole space ℝ². Our main goal is to describe large time behavior of solutions which start their evolution from initial data of small size. This is achieved using radially symmetric self-similar solutions.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:281650
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8,
     author = {Agnieszka Herczak and Micha\l\ Olech},
     title = {Existence and asymptotics of solutions of the Debye-Nernst-Planck system in $\mathbb{R}$$^2$},
     journal = {Banach Center Publications},
     volume = {86},
     year = {2009},
     pages = {129-148},
     zbl = {1172.35329},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8}
}
Agnieszka Herczak; Michał Olech. Existence and asymptotics of solutions of the Debye-Nernst-Planck system in ℝ². Banach Center Publications, Tome 86 (2009) pp. 129-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8/