We investigate a system describing electrically charged particles in the whole space ℝ². Our main goal is to describe large time behavior of solutions which start their evolution from initial data of small size. This is achieved using radially symmetric self-similar solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8, author = {Agnieszka Herczak and Micha\l\ Olech}, title = {Existence and asymptotics of solutions of the Debye-Nernst-Planck system in $\mathbb{R}$$^2$}, journal = {Banach Center Publications}, volume = {86}, year = {2009}, pages = {129-148}, zbl = {1172.35329}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8} }
Agnieszka Herczak; Michał Olech. Existence and asymptotics of solutions of the Debye-Nernst-Planck system in ℝ². Banach Center Publications, Tome 86 (2009) pp. 129-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-8/