We show existence of nonconstant stable equilibria for the Neumann reaction-diffusion problem on domains with fractures inside. We also show that the stability properties of all hyperbolic equilibria remain unchanged under domain perturbation in a quite general sense, covered by the theory of Mosco convergence.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-6, author = {Maria Gokieli and Nicolas Varchon}, title = {Stability and instability of equilibria on singular domains}, journal = {Banach Center Publications}, volume = {86}, year = {2009}, pages = {103-113}, zbl = {1180.35106}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-6} }
Maria Gokieli; Nicolas Varchon. Stability and instability of equilibria on singular domains. Banach Center Publications, Tome 86 (2009) pp. 103-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-6/