We examine the Dirichlet problem for the Poisson equation and the heat equation in weighted spaces of Kondrat'ev's type on a dihedral domain. The weight is a power of the distance from a distinguished axis and it depends on the order of the derivative. We also prove a priori estimates.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-13, author = {Adam Kubica}, title = {The Dirichlet problem in weighted spaces on a dihedral domain}, journal = {Banach Center Publications}, volume = {86}, year = {2009}, pages = {207-222}, zbl = {1167.35333}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-13} }
Adam Kubica. The Dirichlet problem in weighted spaces on a dihedral domain. Banach Center Publications, Tome 86 (2009) pp. 207-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-13/