We show that the Fukumoto-Furuta invariant for a rational homology 3-sphere M, which coincides with the Neumann-Siebenmann invariant for a Seifert rational homology 3-sphere, is the same as the Ozsváth-Szabó's correction term derived from the Heegaard Floer homology theory if M is a spherical 3-manifold.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-9, author = {Masaaki Ue}, title = {The Fukumoto-Furuta and the Ozsv\'ath-Szab\'o invariants for spherical 3-manifolds}, journal = {Banach Center Publications}, volume = {86}, year = {2009}, pages = {121-139}, zbl = {1188.57012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-9} }
Masaaki Ue. The Fukumoto-Furuta and the Ozsváth-Szabó invariants for spherical 3-manifolds. Banach Center Publications, Tome 86 (2009) pp. 121-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-9/