Frobenius algebras and skein modules of surfaces in 3-manifolds
Uwe Kaiser
Banach Center Publications, Tome 86 (2009), p. 59-81 / Harvested from The Polish Digital Mathematics Library

For each (commutative) Frobenius algebra there is defined a skein module of surfaces embedded in a given 3-manifold and bounding a prescribed curve system in the boundary. The skein relations are local and generate the kernel of a certain natural extension of the corresponding topological quantum field theory. In particular the skein module of the 3-ball is isomorphic to the ground ring of the Frobenius algebra. We prove a presentation theorem for the skein module with generators incompressible surfaces colored by elements of a generating set of the Frobenius algebra, and with relations determined by tubing geometry in the manifold and relations of the algebra.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:282154
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-4,
     author = {Uwe Kaiser},
     title = {Frobenius algebras and skein modules of surfaces in 3-manifolds},
     journal = {Banach Center Publications},
     volume = {86},
     year = {2009},
     pages = {59-81},
     zbl = {1181.57008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-4}
}
Uwe Kaiser. Frobenius algebras and skein modules of surfaces in 3-manifolds. Banach Center Publications, Tome 86 (2009) pp. 59-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-4/