In the rational cohomology of a 1-connected space a structure of -algebra is constructed and it is shown that this object determines the rational homotopy type.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-16, author = {Tornike Kadeishvili}, title = {Cohomology $C\_{$\infty$}$-algebra and rational homotopy type}, journal = {Banach Center Publications}, volume = {86}, year = {2009}, pages = {225-240}, zbl = {1181.55012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-16} }
Tornike Kadeishvili. Cohomology $C_{∞}$-algebra and rational homotopy type. Banach Center Publications, Tome 86 (2009) pp. 225-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-16/