We prove that if G is a locally compact Hausdorff group then every proper G-ANR space has the G-homotopy type of a G-CW complex. This is applied to extend the James-Segal G-homotopy equivalence theorem to the case of arbitrary locally compact proper group actions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-11, author = {Sergey A. Antonyan and Erik Elfving}, title = {The equivariant homotopy type of G-ANR's for proper actions of locally compact groups}, journal = {Banach Center Publications}, volume = {86}, year = {2009}, pages = {155-178}, zbl = {1186.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-11} }
Sergey A. Antonyan; Erik Elfving. The equivariant homotopy type of G-ANR's for proper actions of locally compact groups. Banach Center Publications, Tome 86 (2009) pp. 155-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-11/