The equivariant homotopy type of G-ANR's for proper actions of locally compact groups
Sergey A. Antonyan ; Erik Elfving
Banach Center Publications, Tome 86 (2009), p. 155-178 / Harvested from The Polish Digital Mathematics Library

We prove that if G is a locally compact Hausdorff group then every proper G-ANR space has the G-homotopy type of a G-CW complex. This is applied to extend the James-Segal G-homotopy equivalence theorem to the case of arbitrary locally compact proper group actions.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:282068
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-11,
     author = {Sergey A. Antonyan and Erik Elfving},
     title = {The equivariant homotopy type of G-ANR's for proper actions of locally compact groups},
     journal = {Banach Center Publications},
     volume = {86},
     year = {2009},
     pages = {155-178},
     zbl = {1186.55003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-11}
}
Sergey A. Antonyan; Erik Elfving. The equivariant homotopy type of G-ANR's for proper actions of locally compact groups. Banach Center Publications, Tome 86 (2009) pp. 155-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-11/