Optimal isometries for a pair of compact convex subsets of ℝⁿ
Irmina Herburt ; Maria Moszyńska
Banach Center Publications, Tome 86 (2009), p. 111-120 / Harvested from The Polish Digital Mathematics Library

In 1989 R. Arnold proved that for every pair (A,B) of compact convex subsets of ℝ there is an Euclidean isometry optimal with respect to L₂ metric and if f₀ is such an isometry, then the Steiner points of f₀(A) and B coincide. In the present paper we solve related problems for metrics topologically equivalent to the Hausdorff metric, in particular for Lp metrics for all p ≥ 2 and the symmetric difference metric.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:281974
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-7,
     author = {Irmina Herburt and Maria Moszy\'nska},
     title = {Optimal isometries for a pair of compact convex subsets of Rn},
     journal = {Banach Center Publications},
     volume = {86},
     year = {2009},
     pages = {111-120},
     zbl = {1168.52004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-7}
}
Irmina Herburt; Maria Moszyńska. Optimal isometries for a pair of compact convex subsets of ℝⁿ. Banach Center Publications, Tome 86 (2009) pp. 111-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-7/