In 1989 R. Arnold proved that for every pair (A,B) of compact convex subsets of ℝ there is an Euclidean isometry optimal with respect to L₂ metric and if f₀ is such an isometry, then the Steiner points of f₀(A) and B coincide. In the present paper we solve related problems for metrics topologically equivalent to the Hausdorff metric, in particular for metrics for all p ≥ 2 and the symmetric difference metric.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-7, author = {Irmina Herburt and Maria Moszy\'nska}, title = {Optimal isometries for a pair of compact convex subsets of Rn}, journal = {Banach Center Publications}, volume = {86}, year = {2009}, pages = {111-120}, zbl = {1168.52004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-7} }
Irmina Herburt; Maria Moszyńska. Optimal isometries for a pair of compact convex subsets of ℝⁿ. Banach Center Publications, Tome 86 (2009) pp. 111-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-7/