Fractal star bodies
Irmina Herburt ; Maria Moszyńska ; Dorette Pronk
Banach Center Publications, Tome 86 (2009), p. 149-171 / Harvested from The Polish Digital Mathematics Library

In 1989 R. Arnold proved that for every pair (A,B) of compact convex subsets of ℝ there is an Euclidean isometry optimal with respect to L₂ metric and if f₀ is such an isometry, then the Steiner points of f₀(A) and B coincide. In the present paper we solve related problems for metrics topologically equivalent to the Hausdorff metric, in particular for Lp metrics for all p ≥ 2 and the symmetric difference metric.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:281762
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-10,
     author = {Irmina Herburt and Maria Moszy\'nska and Dorette Pronk},
     title = {Fractal star bodies},
     journal = {Banach Center Publications},
     volume = {86},
     year = {2009},
     pages = {149-171},
     zbl = {1184.28005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-10}
}
Irmina Herburt; Maria Moszyńska; Dorette Pronk. Fractal star bodies. Banach Center Publications, Tome 86 (2009) pp. 149-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc84-0-10/