Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation
Wojciech Domitrz
Banach Center Publications, Tome 83 (2008), p. 45-53 / Harvested from The Polish Digital Mathematics Library

We define a procedure of reduction of locally conformal symplectic structures. We find a necessary and sufficient condition for this reduction to hold in terms of a special kind of de Rham cohomology class (tangent to the characteristic foliation) of the Lee form.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:281603
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-3,
     author = {Wojciech Domitrz},
     title = {Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation},
     journal = {Banach Center Publications},
     volume = {83},
     year = {2008},
     pages = {45-53},
     zbl = {1169.53021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-3}
}
Wojciech Domitrz. Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation. Banach Center Publications, Tome 83 (2008) pp. 45-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-3/