We define a procedure of reduction of locally conformal symplectic structures. We find a necessary and sufficient condition for this reduction to hold in terms of a special kind of de Rham cohomology class (tangent to the characteristic foliation) of the Lee form.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-3, author = {Wojciech Domitrz}, title = {Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation}, journal = {Banach Center Publications}, volume = {83}, year = {2008}, pages = {45-53}, zbl = {1169.53021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-3} }
Wojciech Domitrz. Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation. Banach Center Publications, Tome 83 (2008) pp. 45-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-3/