Cobordisms of fold maps of 2k+2-manifolds into 3k+2
Tamás Terpai
Banach Center Publications, Tome 83 (2008), p. 209-213 / Harvested from The Polish Digital Mathematics Library

We calculate the group of cobordisms of k-codimensional maps into Euclidean space with no singularities more complicated than fold for a 2k+2-dimensional source manifold in both oriented and unoriented cases.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282384
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-15,
     author = {Tam\'as Terpai},
     title = {Cobordisms of fold maps of 2k+2-manifolds into $$\mathbb{R}$^{3k+2}$
            },
     journal = {Banach Center Publications},
     volume = {83},
     year = {2008},
     pages = {209-213},
     zbl = {1161.57020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-15}
}
Tamás Terpai. Cobordisms of fold maps of 2k+2-manifolds into $ℝ^{3k+2}$
            . Banach Center Publications, Tome 83 (2008) pp. 209-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc82-0-15/