Global existence and convergence to steady states in a chemorepulsion system
Tomasz Cieślak ; Philippe Laurençot ; Cristian Morales-Rodrigo
Banach Center Publications, Tome 83 (2008), p. 105-117 / Harvested from The Polish Digital Mathematics Library

In this paper we consider a model of chemorepulsion. We prove global existence and uniqueness of smooth classical solutions in space dimension n = 2. For n = 3,4 we prove the global existence of weak solutions. The convergence to steady states is shown in all cases.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282452
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7,
     author = {Tomasz Cie\'slak and Philippe Lauren\c cot and Cristian Morales-Rodrigo},
     title = {Global existence and convergence to steady states in a chemorepulsion system},
     journal = {Banach Center Publications},
     volume = {83},
     year = {2008},
     pages = {105-117},
     zbl = {1156.35325},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7}
}
Tomasz Cieślak; Philippe Laurençot; Cristian Morales-Rodrigo. Global existence and convergence to steady states in a chemorepulsion system. Banach Center Publications, Tome 83 (2008) pp. 105-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7/