In this paper we consider a model of chemorepulsion. We prove global existence and uniqueness of smooth classical solutions in space dimension n = 2. For n = 3,4 we prove the global existence of weak solutions. The convergence to steady states is shown in all cases.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7,
author = {Tomasz Cie\'slak and Philippe Lauren\c cot and Cristian Morales-Rodrigo},
title = {Global existence and convergence to steady states in a chemorepulsion system},
journal = {Banach Center Publications},
volume = {83},
year = {2008},
pages = {105-117},
zbl = {1156.35325},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7}
}
Tomasz Cieślak; Philippe Laurençot; Cristian Morales-Rodrigo. Global existence and convergence to steady states in a chemorepulsion system. Banach Center Publications, Tome 83 (2008) pp. 105-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7/