In this paper we consider a model of chemorepulsion. We prove global existence and uniqueness of smooth classical solutions in space dimension n = 2. For n = 3,4 we prove the global existence of weak solutions. The convergence to steady states is shown in all cases.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7, author = {Tomasz Cie\'slak and Philippe Lauren\c cot and Cristian Morales-Rodrigo}, title = {Global existence and convergence to steady states in a chemorepulsion system}, journal = {Banach Center Publications}, volume = {83}, year = {2008}, pages = {105-117}, zbl = {1156.35325}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7} }
Tomasz Cieślak; Philippe Laurençot; Cristian Morales-Rodrigo. Global existence and convergence to steady states in a chemorepulsion system. Banach Center Publications, Tome 83 (2008) pp. 105-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-7/