Maximal regularity and viscous incompressible flows with free interface
Senjo Shimizu
Banach Center Publications, Tome 83 (2008), p. 471-480 / Harvested from The Polish Digital Mathematics Library

We consider a free interface problem for the Navier-Stokes equations. We obtain local in time unique existence of solutions to this problem for any initial data and external forces, and global in time unique existence of solutions for sufficiently small initial data. Thanks to global in time Lp-Lq maximal regularity of the linearized problem, we can prove a global in time existence and uniqueness theorem by the contraction mapping principle.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:281835
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-29,
     author = {Senjo Shimizu},
     title = {Maximal regularity and viscous incompressible flows with free interface},
     journal = {Banach Center Publications},
     volume = {83},
     year = {2008},
     pages = {471-480},
     zbl = {1154.35480},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-29}
}
Senjo Shimizu. Maximal regularity and viscous incompressible flows with free interface. Banach Center Publications, Tome 83 (2008) pp. 471-480. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-29/