Global existence and uniqueness of weak solutions to Cahn-Hilliard-Gurtin system in elastic solids
Irena Pawłow ; Wojciech M. Zajączkowski
Banach Center Publications, Tome 83 (2008), p. 337-368 / Harvested from The Polish Digital Mathematics Library

In this paper we study the Cahn-Hilliard-Gurtin system describing the phase-separation process in elastic solids. The system has been derived by Gurtin (1996) as an extension of the classical Cahn-Hilliard equation. For a version with viscosity we prove the existence and uniqueness of a weak solution on an infinite time interval and derive an absorbing set estimate.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282197
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-22,
     author = {Irena Paw\l ow and Wojciech M. Zaj\k aczkowski},
     title = {Global existence and uniqueness of weak solutions to Cahn-Hilliard-Gurtin system in elastic solids},
     journal = {Banach Center Publications},
     volume = {83},
     year = {2008},
     pages = {337-368},
     zbl = {1159.35375},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-22}
}
Irena Pawłow; Wojciech M. Zajączkowski. Global existence and uniqueness of weak solutions to Cahn-Hilliard-Gurtin system in elastic solids. Banach Center Publications, Tome 83 (2008) pp. 337-368. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-22/