In this paper we study the Cahn-Hilliard-Gurtin system describing the phase-separation process in elastic solids. The system has been derived by Gurtin (1996) as an extension of the classical Cahn-Hilliard equation. For a version with viscosity we prove the existence and uniqueness of a weak solution on an infinite time interval and derive an absorbing set estimate.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-22, author = {Irena Paw\l ow and Wojciech M. Zaj\k aczkowski}, title = {Global existence and uniqueness of weak solutions to Cahn-Hilliard-Gurtin system in elastic solids}, journal = {Banach Center Publications}, volume = {83}, year = {2008}, pages = {337-368}, zbl = {1159.35375}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-22} }
Irena Pawłow; Wojciech M. Zajączkowski. Global existence and uniqueness of weak solutions to Cahn-Hilliard-Gurtin system in elastic solids. Banach Center Publications, Tome 83 (2008) pp. 337-368. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-22/