Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation
Todor Gramchev ; Grzegorz Łysik
Banach Center Publications, Tome 83 (2008), p. 213-226 / Harvested from The Polish Digital Mathematics Library

We study the Gevrey regularity down to t = 0 of solutions to the initial value problem for a semilinear heat equation tu-Δu=uM. The approach is based on suitable iterative fixed point methods in Lp based Banach spaces with anisotropic Gevrey norms with respect to the time and the space variables. We also construct explicit solutions uniformly analytic in t ≥ 0 and x ∈ ℝⁿ for some conservative nonlinear terms with symmetries.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:282415
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-14,
     author = {Todor  Gramchev and Grzegorz \L ysik},
     title = {Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation},
     journal = {Banach Center Publications},
     volume = {83},
     year = {2008},
     pages = {213-226},
     zbl = {1172.35342},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-14}
}
Todor  Gramchev; Grzegorz Łysik. Uniform analytic-Gevrey regularity of solutions to a semilinear heat equation. Banach Center Publications, Tome 83 (2008) pp. 213-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-14/