If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) and, if K ∩ X is w*-dense in K, then ; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then ; (iii) if X has a 1-symmetric basis, then .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-6, author = {Antonio S. Granero and Marcos S\'anchez}, title = {The extension of the Krein-\v Smulian theorem for order-continuous Banach lattices}, journal = {Banach Center Publications}, volume = {83}, year = {2008}, pages = {79-93}, zbl = {1144.46016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-6} }
Antonio S. Granero; Marcos Sánchez. The extension of the Krein-Šmulian theorem for order-continuous Banach lattices. Banach Center Publications, Tome 83 (2008) pp. 79-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-6/