The extension of the Krein-Šmulian theorem for order-continuous Banach lattices
Antonio S. Granero ; Marcos Sánchez
Banach Center Publications, Tome 83 (2008), p. 79-93 / Harvested from The Polish Digital Mathematics Library

If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) d̂(co¯w*(K),X)2d̂(K,X) and, if K ∩ X is w*-dense in K, then d̂(co¯w*(K),X)=d̂(K,X); (ii) if X fails to have a copy of ℓ₁(ℵ₁), then d̂(co¯w*(K),X)=d̂(K,X); (iii) if X has a 1-symmetric basis, then d̂(co¯w*(K),X)=d̂(K,X).

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:286276
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-6,
     author = {Antonio S. Granero and Marcos S\'anchez},
     title = {The extension of the Krein-\v Smulian theorem for order-continuous Banach lattices},
     journal = {Banach Center Publications},
     volume = {83},
     year = {2008},
     pages = {79-93},
     zbl = {1144.46016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-6}
}
Antonio S. Granero; Marcos Sánchez. The extension of the Krein-Šmulian theorem for order-continuous Banach lattices. Banach Center Publications, Tome 83 (2008) pp. 79-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-6/