We consider an embedding of the group of invertible transformations of [0,1] into the algebra of bounded linear operators on an Orlicz space. We show that if this embedding preserves the group action then the Orlicz space is an -space for some 1 ≤ p < ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-3, author = {Maciej Burnecki}, title = {An operator characterization of $L^p$-spaces in a class of Orlicz spaces}, journal = {Banach Center Publications}, volume = {83}, year = {2008}, pages = {53-55}, zbl = {1144.46026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-3} }
Maciej Burnecki. An operator characterization of $L^p$-spaces in a class of Orlicz spaces. Banach Center Publications, Tome 83 (2008) pp. 53-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-3/