In this paper, we define the direct sum of Banach spaces X₁,X₂,..., and Xₙ and consider it equipped with the Cesàro p-norm when 1 ≤ p < ∞. We show that has the H-property if and only if each has the H-property, and has the Schur property if and only if each has the Schur property. Moreover, we also show that is rotund if and only if each is rotund.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-20, author = {Saard Youyen and Suthep Suantai}, title = {On the H-property and rotundity of Ces\`aro direct sums of Banach spaces}, journal = {Banach Center Publications}, volume = {83}, year = {2008}, pages = {247-252}, zbl = {1173.46007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-20} }
Saard Youyen; Suthep Suantai. On the H-property and rotundity of Cesàro direct sums of Banach spaces. Banach Center Publications, Tome 83 (2008) pp. 247-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-20/