We study linear operators from a non-locally convex Orlicz space to a Banach space . Recall that a linear operator is said to be σ-smooth whenever in implies . It is shown that every σ-smooth operator factors through the inclusion map , where Φ̅ denotes the convex minorant of Φ. We obtain the Bochner integral representation of σ-smooth operators . This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on a locally convex Orlicz space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-12, author = {Marian Nowak and Agnieszka Oelke}, title = {Linear operators on non-locally convex Orlicz spaces}, journal = {Banach Center Publications}, volume = {83}, year = {2008}, pages = {157-165}, zbl = {1145.46018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-12} }
Marian Nowak; Agnieszka Oelke. Linear operators on non-locally convex Orlicz spaces. Banach Center Publications, Tome 83 (2008) pp. 157-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc79-0-12/