Asymptotically self-similar solutions for the parabolic system modelling chemotaxis
Yūki Naito
Banach Center Publications, Tome 72 (2006), p. 149-160 / Harvested from The Polish Digital Mathematics Library

We consider a nonlinear parabolic system modelling chemotaxis ut=·(u-uv), vt=Δv+u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:281801
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc74-0-9,
     author = {Y\=uki Naito},
     title = {Asymptotically self-similar solutions for the parabolic system modelling chemotaxis},
     journal = {Banach Center Publications},
     volume = {72},
     year = {2006},
     pages = {149-160},
     zbl = {1115.35059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc74-0-9}
}
Yūki Naito. Asymptotically self-similar solutions for the parabolic system modelling chemotaxis. Banach Center Publications, Tome 72 (2006) pp. 149-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc74-0-9/