We consider a nonlinear parabolic system modelling chemotaxis , in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc74-0-9, author = {Y\=uki Naito}, title = {Asymptotically self-similar solutions for the parabolic system modelling chemotaxis}, journal = {Banach Center Publications}, volume = {72}, year = {2006}, pages = {149-160}, zbl = {1115.35059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc74-0-9} }
Yūki Naito. Asymptotically self-similar solutions for the parabolic system modelling chemotaxis. Banach Center Publications, Tome 72 (2006) pp. 149-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc74-0-9/