The monotone Poisson process
Alexander C. R. Belton
Banach Center Publications, Tome 72 (2006), p. 99-115 / Harvested from The Polish Digital Mathematics Library

The coefficients of the moments of the monotone Poisson law are shown to be a type of Stirling number of the first kind; certain combinatorial identities relating to these numbers are proved and a new derivation of the Cauchy transform of this law is given. An investigation is begun into the classical Azéma-type martingale which corresponds to the compensated monotone Poisson process; it is shown to have the chaotic-representation property and its sample paths are described.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:282151
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc73-0-6,
     author = {Alexander C. R. Belton},
     title = {The monotone Poisson process},
     journal = {Banach Center Publications},
     volume = {72},
     year = {2006},
     pages = {99-115},
     zbl = {1109.46052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc73-0-6}
}
Alexander C. R. Belton. The monotone Poisson process. Banach Center Publications, Tome 72 (2006) pp. 99-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc73-0-6/