Quantum random walk revisited
Kalyan B. Sinha
Banach Center Publications, Tome 72 (2006), p. 377-390 / Harvested from The Polish Digital Mathematics Library

In the framework of the symmetric Fock space over L²(ℝ₊), the details of the approximation of the four fundamental quantum stochastic increments by the four appropriate spin-matrices are studied. Then this result is used to prove the strong convergence of a quantum random walk as a map from an initial algebra 𝓐 into 𝓐 ⊗ ℬ (Fock(L²(ℝ₊))) to a *-homomorphic quantum stochastic flow.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:282556
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc73-0-30,
     author = {Kalyan B. Sinha},
     title = {Quantum random walk revisited},
     journal = {Banach Center Publications},
     volume = {72},
     year = {2006},
     pages = {377-390},
     zbl = {1103.81030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc73-0-30}
}
Kalyan B. Sinha. Quantum random walk revisited. Banach Center Publications, Tome 72 (2006) pp. 377-390. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc73-0-30/