Interpolation and integration based on averaged values
Borislav Bojanov
Banach Center Publications, Tome 72 (2006), p. 25-47 / Harvested from The Polish Digital Mathematics Library

We discuss recent results on constructing approximating schemes based on averaged values of the approximated function f over linear segments. In particular, we describe interpolation and integration formulae of high algebraic degree of precision that use weighted integrals of f over non-overlapping subintervals of the real line. The quadrature formula of this type of highest algebraic degree of precision is characterized.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:282450
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-2,
     author = {Borislav Bojanov},
     title = {Interpolation and integration based on averaged values},
     journal = {Banach Center Publications},
     volume = {72},
     year = {2006},
     pages = {25-47},
     zbl = {1116.41003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-2}
}
Borislav Bojanov. Interpolation and integration based on averaged values. Banach Center Publications, Tome 72 (2006) pp. 25-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-2/