We extend results on constructing semiorthogonal linear spline prewavelet systems in one and two dimensions to the case of irregular dyadic refinement. In the one-dimensional case, we obtain sharp two-sided inequalities for the -condition, 1 < p < ∞, of such systems.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-14,
author = {Peter Oswald},
title = {Semiorthogonal linear prewavelets on irregular meshes},
journal = {Banach Center Publications},
volume = {72},
year = {2006},
pages = {221-234},
zbl = {1175.42021},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-14}
}
Peter Oswald. Semiorthogonal linear prewavelets on irregular meshes. Banach Center Publications, Tome 72 (2006) pp. 221-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-14/