We extend results on constructing semiorthogonal linear spline prewavelet systems in one and two dimensions to the case of irregular dyadic refinement. In the one-dimensional case, we obtain sharp two-sided inequalities for the -condition, 1 < p < ∞, of such systems.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-14, author = {Peter Oswald}, title = {Semiorthogonal linear prewavelets on irregular meshes}, journal = {Banach Center Publications}, volume = {72}, year = {2006}, pages = {221-234}, zbl = {1175.42021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-14} }
Peter Oswald. Semiorthogonal linear prewavelets on irregular meshes. Banach Center Publications, Tome 72 (2006) pp. 221-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-14/