Let be the normalized gaussian system such that , i = 1,2,... and let the correlation matrix satisfy the following hypothesis: . We present Gebelein’s inequality and some of its consequences: Borel-Cantelli type lemma, iterated log law, Levy’s norm for the gaussian sequence etc. The main result is that (f(X₁) + ⋯ + f(Xₙ))/n → 0 a.s. for f ∈ L¹(ν) with (f,1)ν = 0.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-1, author = {M. Be\'ska and Z. Ciesielski}, title = {Gebelein's inequality and its consequences}, journal = {Banach Center Publications}, volume = {72}, year = {2006}, pages = {11-23}, zbl = {1109.60025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-1} }
M. Beśka; Z. Ciesielski. Gebelein's inequality and its consequences. Banach Center Publications, Tome 72 (2006) pp. 11-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc72-0-1/