The gaps in the spectrum of the Schrödinger operator
Haizhong Li ; Linlin Su
Banach Center Publications, Tome 68 (2005), p. 91-102 / Harvested from The Polish Digital Mathematics Library

We obtain inequalities between the eigenvalues of the Schrödinger operator on a compact domain Ω of a submanifold M in RN with boundary ∂Ω, which generalize many existing inequalities for the Laplacian on a bounded domain of a Euclidean space. We also establish similar inequalities for a closed minimal submanifold in the unit sphere, which generalize and improve Yang-Yau’s result.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:282256
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-5,
     author = {Haizhong Li and Linlin Su},
     title = {The gaps in the spectrum of the Schr\"odinger operator},
     journal = {Banach Center Publications},
     volume = {68},
     year = {2005},
     pages = {91-102},
     zbl = {1081.35062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-5}
}
Haizhong Li; Linlin Su. The gaps in the spectrum of the Schrödinger operator. Banach Center Publications, Tome 68 (2005) pp. 91-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-5/