A characterization of n-dimensional hypersurfaces in Rn+1 with commuting curvature operators
Yulian T. Tsankov
Banach Center Publications, Tome 68 (2005), p. 205-209 / Harvested from The Polish Digital Mathematics Library

Let Mⁿ be a hypersurface in Rn+1. We prove that two classical Jacobi curvature operators Jx and Jy commute on Mⁿ, n > 2, for all orthonormal pairs (x,y) and for all points p ∈ M if and only if Mⁿ is a space of constant sectional curvature. Also we consider all hypersurfaces with n ≥ 4 satisfying the commutation relation (Kx,yKz,u)(u)=(Kz,uKx,y)(u), where Kx,y(u)=R(x,y,u), for all orthonormal tangent vectors x,y,z,w and for all points p ∈ M.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:282030
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-16,
     author = {Yulian T. Tsankov},
     title = {A characterization of n-dimensional hypersurfaces in $R^{n+1}$ with commuting curvature operators},
     journal = {Banach Center Publications},
     volume = {68},
     year = {2005},
     pages = {205-209},
     zbl = {1091.53009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-16}
}
Yulian T. Tsankov. A characterization of n-dimensional hypersurfaces in $R^{n+1}$ with commuting curvature operators. Banach Center Publications, Tome 68 (2005) pp. 205-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-16/