Let Mⁿ be a hypersurface in . We prove that two classical Jacobi curvature operators and commute on Mⁿ, n > 2, for all orthonormal pairs (x,y) and for all points p ∈ M if and only if Mⁿ is a space of constant sectional curvature. Also we consider all hypersurfaces with n ≥ 4 satisfying the commutation relation , where , for all orthonormal tangent vectors x,y,z,w and for all points p ∈ M.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-16, author = {Yulian T. Tsankov}, title = {A characterization of n-dimensional hypersurfaces in $R^{n+1}$ with commuting curvature operators}, journal = {Banach Center Publications}, volume = {68}, year = {2005}, pages = {205-209}, zbl = {1091.53009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-16} }
Yulian T. Tsankov. A characterization of n-dimensional hypersurfaces in $R^{n+1}$ with commuting curvature operators. Banach Center Publications, Tome 68 (2005) pp. 205-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-16/