We study when the Jacobi operator associated to the Weyl conformal curvature tensor has constant eigenvalues on the bundle of unit spacelike or timelike tangent vectors. This leads to questions in the conformal geometry of pseudo-Riemannian manifolds which generalize the Osserman conjecture to this setting. We also study similar questions related to the skew-symmetric curvature operator defined by the Weyl conformal curvature tensor.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-15, author = {N. Bla\v zi\'c and P. Gilkey and S. Nik\v cevi\'c and U. Simon}, title = {The spectral geometry of the Weyl conformal tensor}, journal = {Banach Center Publications}, volume = {68}, year = {2005}, pages = {195-203}, zbl = {1091.53007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-15} }
N. Blažić; P. Gilkey; S. Nikčević; U. Simon. The spectral geometry of the Weyl conformal tensor. Banach Center Publications, Tome 68 (2005) pp. 195-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-15/