Interpolation of the essential spectrum and the essential norm
A. G. Aksoy ; H.-O. Tylli
Banach Center Publications, Tome 68 (2005), p. 9-18 / Harvested from The Polish Digital Mathematics Library

The behavior of the essential spectrum and the essential norm under (complex/real) interpolation is investigated. We extend an example of Albrecht and Müller for the spectrum by showing that in complex interpolation the essential spectrum σe(S[θ]) of an interpolated operator is also in general a discontinuous map of the parameter θ. We discuss the logarithmic convexity (up to a multiplicative constant) of the essential norm under real interpolation, and show that this holds provided certain compact approximation conditions are satisfied. Some evidence supporting a counterexample is presented.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:282005
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc68-0-1,
     author = {A. G. Aksoy and H.-O. Tylli},
     title = {Interpolation of the essential spectrum and the essential norm},
     journal = {Banach Center Publications},
     volume = {68},
     year = {2005},
     pages = {9-18},
     zbl = {1092.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc68-0-1}
}
A. G. Aksoy; H.-O. Tylli. Interpolation of the essential spectrum and the essential norm. Banach Center Publications, Tome 68 (2005) pp. 9-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc68-0-1/