Invariants of bi-Lipschitz equivalence of real analytic functions
Jean-Pierre Henry ; Adam Parusiński
Banach Center Publications, Tome 65 (2004), p. 67-75 / Harvested from The Polish Digital Mathematics Library

We construct an invariant of the bi-Lipschitz equivalence of analytic function germs (ℝⁿ,0) → (ℝ,0) that varies continuously in many analytic families. This shows that the bi-Lipschitz equivalence of analytic function germs admits continuous moduli. For a germ f the invariant is given in terms of the leading coefficients of the asymptotic expansions of f along the sets where the size of |x| |grad f(x)| is comparable to the size of |f(x)|.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:282431
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-5,
     author = {Jean-Pierre Henry and Adam Parusi\'nski},
     title = {Invariants of bi-Lipschitz equivalence of real analytic functions},
     journal = {Banach Center Publications},
     volume = {65},
     year = {2004},
     pages = {67-75},
     zbl = {1059.32006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-5}
}
Jean-Pierre Henry; Adam Parusiński. Invariants of bi-Lipschitz equivalence of real analytic functions. Banach Center Publications, Tome 65 (2004) pp. 67-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-5/