On the Heisenberg sub-Lorentzian metric on ℝ³
Marek Grochowski
Banach Center Publications, Tome 65 (2004), p. 57-65 / Harvested from The Polish Digital Mathematics Library

In this paper we study properties of the Heisenberg sub-Lorentzian metric on ℝ³. We compute the conjugate locus of the origin, and prove that the sub-Lorentzian distance in this case is differentiable on some open set. We also prove the existence of regular non-Hamiltonian geodesics, a phenomenon which does not occur in the sub-Riemannian case.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:282333
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-4,
     author = {Marek Grochowski},
     title = {On the Heisenberg sub-Lorentzian metric on $\mathbb{R}$$^3$},
     journal = {Banach Center Publications},
     volume = {65},
     year = {2004},
     pages = {57-65},
     zbl = {1065.53055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-4}
}
Marek Grochowski. On the Heisenberg sub-Lorentzian metric on ℝ³. Banach Center Publications, Tome 65 (2004) pp. 57-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-4/