In this paper we study properties of the Heisenberg sub-Lorentzian metric on ℝ³. We compute the conjugate locus of the origin, and prove that the sub-Lorentzian distance in this case is differentiable on some open set. We also prove the existence of regular non-Hamiltonian geodesics, a phenomenon which does not occur in the sub-Riemannian case.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-4, author = {Marek Grochowski}, title = {On the Heisenberg sub-Lorentzian metric on $\mathbb{R}$$^3$}, journal = {Banach Center Publications}, volume = {65}, year = {2004}, pages = {57-65}, zbl = {1065.53055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-4} }
Marek Grochowski. On the Heisenberg sub-Lorentzian metric on ℝ³. Banach Center Publications, Tome 65 (2004) pp. 57-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc65-0-4/