Global existence of solutions for a strongly coupled population system
Gonzalo Galiano ; Ansgar Jüngel
Banach Center Publications, Tome 60 (2003), p. 209-216 / Harvested from The Polish Digital Mathematics Library

A strongly coupled cross-diffusion model for two competing species in a heterogeneous environment is analyzed. We sketch the proof of an existence result for the evolution problem with non-flux boundary conditions in one space dimension, completing previous results [4]. The proof is based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:282262
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc63-0-9,
     author = {Gonzalo  Galiano and Ansgar  J\"ungel},
     title = {Global existence of solutions for a strongly coupled population system},
     journal = {Banach Center Publications},
     volume = {60},
     year = {2003},
     pages = {209-216},
     zbl = {1065.35149},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc63-0-9}
}
Gonzalo  Galiano; Ansgar  Jüngel. Global existence of solutions for a strongly coupled population system. Banach Center Publications, Tome 60 (2003) pp. 209-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc63-0-9/