Semilinear perturbations of Hille-Yosida operators
Horst R. Thieme ; Hauke Vosseler
Banach Center Publications, Tome 60 (2003), p. 87-122 / Harvested from The Polish Digital Mathematics Library

The semilinear Cauchy problem (1) u’(t) = Au(t) + G(u(t)), u(0)=xD(A)¯, with a Hille-Yosida operator A and a nonlinear operator G: D(A) → X is considered under the assumption that ||G(x) - G(y)|| ≤ ||B(x -y )|| ∀x,y ∈ D(A) with some linear B: D(A) → X, B(λ-A)-1x=λ0e-λtV(s)xds, where V is of suitable small strong variation on some interval [0,ε). We will prove the existence of a semiflow on [0,)×D(A)¯ that provides Friedrichs solutions in L₁ for (1). If X is a Banach lattice, we replace the condition above by |G(x) - G(y)| ≤ Bv whenever x,y,v ∈ D(A), |x-y| ≤ v, with B being positive. We illustrate our results by applications to age-structured population models.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:281610
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc63-0-3,
     author = {Horst R. Thieme and Hauke Vosseler},
     title = {Semilinear perturbations of Hille-Yosida operators},
     journal = {Banach Center Publications},
     volume = {60},
     year = {2003},
     pages = {87-122},
     zbl = {1073.47063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc63-0-3}
}
Horst R. Thieme; Hauke Vosseler. Semilinear perturbations of Hille-Yosida operators. Banach Center Publications, Tome 60 (2003) pp. 87-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc63-0-3/