Generalized signature operators and spectral triples for the Kronecker foliation
R. Matthes ; O. Richter ; G. Rudolph
Banach Center Publications, Tome 60 (2003), p. 125-147 / Harvested from The Polish Digital Mathematics Library

We consider two spectral triples related to the Kronecker foliation. The corresponding generalized Dirac operators are constructed from first and second order signature operators. Furthermore, we consider the differential calculi corresponding to these spectral triples. In one case, the calculus has a description in terms of generators and relations, in the other case it is an "almost free" calculus.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:281871
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc61-0-9,
     author = {R. Matthes and O. Richter and G. Rudolph},
     title = {Generalized signature operators and spectral triples for the Kronecker foliation},
     journal = {Banach Center Publications},
     volume = {60},
     year = {2003},
     pages = {125-147},
     zbl = {1059.58022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc61-0-9}
}
R. Matthes; O. Richter; G. Rudolph. Generalized signature operators and spectral triples for the Kronecker foliation. Banach Center Publications, Tome 60 (2003) pp. 125-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc61-0-9/